Reactor Innovation for Non-oxidative Conversion of Methane

Wed, Dec 8, 2021, 4:00 pm to 5:00 pm
Engineering QUAD, A224

Methane, the main constituent of natural gas and biogas, is deemed to be an alternative source to replace crude oil to produce chemicals and fuels. Direct non-oxidative methane conversion (NMC) has been recognized as a single-step technology that directly convert methane to olefins and higher hydrocarbons. Low methane conversion, high energy input and low catalyst durability, due to endothermic reaction nature and coke formation, are main challenges. In this talk, I would like to highlight our recent innovations in catalytic wall and membrane reactors that solve the thermodynamic and kinetic challenges in NMC to achieve high methane conversion, high hydrocarbon yield, negligible coke formation and system’s long-term stability. These consequences originate from the removal of hydrogen co-product from NMC by hydrogen separation membranes to right shift the reaction towards high conversion. The elimination of coke formation achieved via design of short-contact time catalytic wall reactor which enables methane activation and suppresses the following secondary and following on reaction steps. A process simulation using Aspen Plus indicate the great economic viability of the NMC operation in either membrane or catalytic wall reactors for practical industrial applications.