Composed of snippets of molecular sheets carbon only a few Angstroms thick, the particles have been shown to help fuels ignite and burn faster, a quality that could usher in the next generation of combustion engines. The Princeton team hopes to better understand why the nanocatalyst help fuels ignite and what kinds of particles would work best for building the engines of the future.
“Right now we don’t know what actual reactions enhance the combustion rates when the particles are added to fuels,” said Ilhan Aksay, a professor of chemical engineering at Princeton and the lead investigator on the project. “If we understand it further, we can make it more effective.”
The funding, which comes from the Air Force as part of the 2009 American Recovery and Reinvestment Act Research Program, will be used to tackle a fundamental barrier to designing faster supersonic aircraft. For aircraft already flying quicker than the speed of sound to travel even faster, their engines must operate at faster speeds and fuel must move through them more rapidly, but the ignition time and burn rate of current jet fuels limits the speed of the engines.
“To fly at highly supersonic speeds one needs to run the propulsion system at supersonic speed to maximize its efficiency but there is little time to mix, ignite and extract energy from the fuel,” said Richard Yetter, a professor of mechanical engineering at Pennsylvania State University who is a principal investigator on the project. “To make the planes go faster, we need to burn fuel faster.”
Graphene exhibits unusual physical and electrical properties and has been lauded for its potential in ultrafast and light electronic technologies such a computers and digital displays. Aksay and his colleagues are hoping to leverage another characteristic of the graphene particles: when small amounts are added to liquid fuels, they lower the temperature at which the fuel ignites.
“The concentration of the nanocatalyst in the fuel would be very small,” Aksay said. “The idea of being able to put in a very small quantity and have such a dramatic effect is important.“
The catalyst might also be used to reduce the amount of nitric oxide produced by diesel engines or accelerate soot oxidation rates, which could reduce the pollution and fuel use. The graphene particles might also be used in liquid propellants for thrusters that help satellites position themselves in space.
Aksay said his research team blends expertise in various fields. It includes several other Princeton professors: Annabella Selloni and Roberto Car , from the Department of Chemistry, and Frederick Dryer, of Mechanical and Aerospace Engineering. Additional researchers from other universities include: Mark Barteau of chemical engineering from the University of Delaware; Jennifer Wilcox, from Energy Resources Engineering at Stanford University; and Michael Zachariah, of mechanical engineering and chemistry at the University of Maryland.
“This is a truly interdisciplinary project,” Aksay said. “Nowadays the research is so collaborative, if you sit in your office and work all by yourself, you will miss out on a lot.”