Pierre-Thomas Brun

Assistant Professor in Chemical and Biological Engineering
Phone: 
609-258-2620
Email Address: 
pbrun@princeton.edu
Assistant: 
Office Location: 
A313 Engineering Quad
Degrees: 

Ph.D., Mechanics, University of Paris VI, 2012

M.S., Chemical Engineering, Cambridge University, 2009

B.S., Engineering, Ecole Polytechnique, 2008

Honors and Awards

  • APS Gallery of fluid motion, Milton van Dyke Award Winner, 2017
  • APS/DFD Gallery of Fluid Motion Award Winners, 2015

Affiliations

  • Associated Faculty, Andlinger Center for Energy and the Environment
  • Associated Faculty, Princeton Institute for the Science and Technology of Materials

Research Interests

My research is concerned with developing predictive models that rationalize the physics at play in problems arising in natural settings and model laboratory experiments. Through the elucidation of a variety of nature’s mechanisms, my group aims to inspire and inform the design of new technologies. Iteration between observation, analog experiment and theoretical modeling is a critical feature of my research, which is interdisciplinary by nature at the cusp of fluid mechanics, flexible solids mechanics, non-linear physics, biology and design.

Taming instabilities toward functionality

Patterns in nature have a staggering regularity that contrasts with the complexity of their constituent materials. The seemingness ease with which such patterns occur suggests that they are encoded in the "blueprint of nature". They are often the result of instabilities -- traditionally seen as the engineer's nemesis. Here, we propose to tame such instabilities and harness them in fluidic systems undergoing a phase change. With this perspective, we study problems involving thin fluid films, viscous threads (3D printing), microfluidics systems, but also elastic shells, swelling and elastocapillarity.

Shape morphing/ actuation and living matter

Applications are not limited to fluids and range from reversible shape-morphing and snapping in shells to morphogenesis. Furthering our capacity to elucidate those mechanisms through an improved formalism (theory/numerics/experiments) would indeed benefit our understanding of living matter and inform the development of bio-inspired or bio-augmented technology.

Publications List: 
  1. J. Marthelot, L. Strong, P.M. Reis and P.-T. Brun. ”Designing soft materials with interfacial instabilities in liquid films”, Nature Commun., (2018)
  2. P.-T. Brun, Chikara Inamura, Daniel Lizardo, Giorgia Franchin, Michael Stern, Peter Houk, and Neri Oxman, ”The molten glass sewing machine” Phil. Trans. R. Soc. A , 375 (2093), 20160156, (2017)
  3. A Lee, P.-T. Brun, J. Marthelot, G. Balestra, F. Gallaire and P. M. Reis ”Fabrication of slender elastic shells by the coating of curved surfaces”. Nature Communications, 7, (2016)
  4. P.-T. Brun, N. M. Ribe, B. Audoly and J. Lister ”A geometrical model for the viscous sewing machine” · Phys. Rev. Letters, 114 (17), 174501, (2015)
  5. P.-T. Brun, B. Audoly, N. M. Ribe, ”A numerical investigation of the fluid mechanical sewing machine”, Physics of Fluids 24 (4), 043102, (2012)