Stanislav Y. Shvartsman

Professor of Molecular Biology and the Lewis Sigler Institute for Integrative Genomics
Office Phone
248 Carl C. Icahn Laboratory

Ph.D., Princeton University, 1999

M.S., Technion, Israel Institute of Technology, 1995

B.S., Physical Chemistry, Moscow State University, 1991


Honors and Awards

  •  Graduate Mentoring Award, McGraw Center for Teaching and Learning, 2018
  • CAREER Award, National Science Foundation, 2005
  • Sloan Fellow, 2004
  • Dreyfus Teacher-Scholar, 2004
  • Rheinstein Award, Princeton University, School of Engineering and Applied Science, 2004
  • Searle Scholar, 2003
  • NIGMS Postdoctoral Fellowship in Quantitative Biology (MIT), 2001
  • Ticona Award, Princeton University, 2000
  • Gutwirth Prize, Technion, 1994


  • Faculty, Department of Molecular Biology
  • Faculty, Lewis-Sigler Institute for Integrative Genomics
  • Associated Faculty, Department of Chemical and Biological Engineering
  • Associated Faculty, Omenn-Darling Bioengineering Institute

Research Interests

The main focus of our work is on the quantitative analysis of development. Our goal is to establish models that connect multiple levels of description, from gene sequence to pattern formation and morphogenesis. We emphasize close coupling between genetic experiments, computations, and theory, and use the fruit fly as an experimental system for model validation.

Signal transduction and morphogen gradients: Animal development relies on a handful of signaling pathways, which were discovered by genetic and biochemical techniques. Exploring the dynamics and function of these pathways is essentially impossible without mathematical models. We are combining imaging, computational, and genetic approaches in order to develop and experimentally test mathematical models of the Mitogen Activated Protein Kinase (MAPK) pathway, a key regulator of tissues in animals from worms to humans. Using the terminal patterning system in the early Drosophila embryo as an experimental model, we are examining how multiple levels of organization within the MAPK pathway control its dynamics and function. We discovered that the gradient of MAPK phosphorylation is established by a cascade of diffusion-trapping modules and are now studying how this gradient controls its biochemical and transcriptional targets.

Epithelial patterning and morphogenesis: Epithelial morphogenesis, a process by which cellular sheets are folded into three-dimensional structures, relies on cell shape changes and rearrangements that control local tissue deformations. These spatially controlled cell behaviors reflect the spatial expression of “morphogenesis” genes responsible for cell adhesion, shape control, and force generation. The fact that the same morphogenesis genes are implicated in the formation of an amazing variety of structures suggests the possibility of a universal epithelial folding code. We are using the Drosophila eggshell morphogenesis as a versatile experimental model for exploring this idea. In the past, we used modeling and large-scale transcriptional profiling experiments to characterize the dynamics of two-dimensional pattern formation in this system. At this point, we are using imaging and biomechanical models to study how these patterns give rise to controlled tissue deformations.

Selected Publications
  1. Jasmin Imran Alsous, Paul Villoutreix, Norbert Stoop, Stanislav Y. Shvartsman, Jörn Dunkel, Entropic effects in cell lineage tree packings. Nature Physics (2018). DOI: 10.1038/s41567-018-0202-0
  2. Rocky Diegmiller, Hadrien Montanelli, Cyrill B. Muratov, Stanislav Y. Shvartsman, Spherical caps in cell polarization. Biophysical Journal (2018). DOI: 10.1016/j.bpj.2018.05.033
  3.  Yonghyun Song, Robert A. Marmion, Junyoung O. Park, Debopriyo Biswas, Joshua D. Rabinowitz, and Stanislav Y. Shvartsman, Dynamic Control of dNTP Synthesis in Early Embryos. Developmental Cell (2017). DOI: 10.1016/j.devcel.2017.06.013
  4. Yogesh Goyal, Granton A Jindal, José L Pelliccia, Kei Yamaya, Eyan Yeung, Alan S Futran, Rebecca D Burdine, Trudi Schüpbach & Stanislav Y Shvartsman, Divergent effects of intrinsically active MEK variants on developmental Ras signaling. Nature Genetics (2017). DOI: 10.1038/ng.3780
  5. Mahim Misra, Basile Audoly, Ioannis G. Kevrekidis & Stanislav Y. Shvartsman, Shape Transformations of Epithelial Shells. Biophysical Journal, Vol. 110 (7) 1670–1678 (2016). DOI: 10.1016/j.bpj.2016.03.009