Cellular and Tissue Engineering

The investigation and manipulation of the internal workings of cells is known as cellular engineering. Our research combines microfluidics, soft matter physics, cell biology and imaging to investigate how structures assemble within cells and how cells respond to external cues. Another important tool in this area is metabolic engineering, which relies on the elucidation of the architecture and interactions of metabolic networks within cells. A major area of research at Princeton is the study of liquid-liquid phase transition phenomena within cells that are responsible for the formation of membrane-less organelles.

Tissue engineering focuses at the level of cell assemblies — how they form, what signals and patterns in space and time determine the structure of organs in healthy and diseased states, and how external mechanical forces influence cell functioning and assembly.

At the intersection of cellular and tissue engineering are studies of morphogenesis (development of organs) and embryogenesis (growth of embryos from a single fertilized cell). Our researchers study how cells cooperate and integrate to build complex tissue geometries, develop mathematical models for the quantitative analysis of development, and study how physical and chemical effects shape microbial communities and their collective functions.



  • José L. Avalos

    Metabolic Engineering; Synthetic Biology; Structural Biology and Protein Engineering; Systems Biology; Protein Biochemistry and Biophysics
  • Clifford P. Brangwynne

    Patterning in Developing Embryos; Physical Properties and Function of RNA/Protein Bodies; Architecture and Dynamics of the Cytoskeleton
  • Mark P. Brynildsen

    Host-pathogen Interactions; Bacterial Persistence
  • Sujit S. Datta

    Soft Matter Physics and Engineering; Flow Through Porous Media; Interfacial Phenomena; Biophysics; Biological Polymers; Microfluidics
  • A. James Link

    Protein Engineering; Peptides; Natural Products; Antibiotics; Microbiology; Genomics; Supramolecular Chemistry
  • Celeste M. Nelson

    Mammalian Tissue Morphogenesis/Morphodynamics; Microfabrication/bioMEMS for Tissue Engineering; Cell Adhesion and Mechanics
  • Michael A. Webb

    Theory and simulation of soft/polymeric materials; computational materials design; multiscale simulation; machine-learning in molecular modeling

Associated Faculty

  • Daniel Cohen

    Bioengineering: biomaterials, biomechanics, swarm behavior
  • Mohamed S. Donia

    Small-molecule-mediated interactions, the human microbiome in health and disease, metagenomics and computational biology, drug metabolism
  • Sabine Petry

    Molecular architecture and function of the microtubule cytoskeleton; X-ray crystallography and engineering; biophysical methods
  • Stanislav Y. Shvartsman

    Quantitative Analysis of Pattern Formation and Morphogenesis in Developing Tissues; Genetics, Genomics and Computation of Signaling Pathways
  • Howard A. Stone

    Fluid Dynamics and Transport Processes; Complex Fluids; Colloidal Hydrodynamics; Microfluidics; Cellular-scale Hydrodynamics; Biofilms
  • Jared Toettcher

    Cell Signaling Pathways; Cellular Optogenetics; High-resolution Microscopy; Biochemistry/Cell Biology; Systems Biology; Signal Processing
  • Martin Wühr

    Molecular Self-organization; Protein Partitioning; Quantitative Proteomics