Energy and Environment

Over the next several decades, energy and environmental issues will be at the forefront of consideration for engineers and the society at large. We are researching effective and environmentally-friendly ways to enhance oil recovery, as well as routes toward alternative, sustainable energy sources via photovoltaics and the indirect conversion of sunlight into renewable biofuels. We are also researching solutions to environmental challenges like water remediation and the mitigation of greenhouse gas emissions.

We collaborate with the Princeton Plasma Physics Laboratory, which is the center of a large effort on fusion energy, on the development of appropriate materials for plasma reactors (i.e. tokamaks). And we are currently investigating methods to remove CO2 from flue gases through the use of special high-temperature fuel cells.

Work in this area is frequently done in collaboration with the Andlinger Center for Energy and the Environment, where CBE faculty have a strong presence at all levels of leadership and research. The Andlinger Center also has active research into the holistic integration and analysis of energy technologies and the impact of policy, economics and human behavior on their implementation.


  • José L. Avalos

    Metabolic Engineering; Synthetic Biology; Structural Biology and Protein Engineering; Systems Biology; Protein Biochemistry and Biophysics
  • Pierre-Thomas Brun

    Dynamics of Fluids and Flexible Solids; Interfacial Phenomena; Pattern Forming Instabilities; Dynamics of Living Systems
  • Jonathan M. Conway

    Plant-Microbe Interactions; Systems Biology; Microbiome; Bacterial Genetics; Synthetic Biology; Enzymology
  • Sujit S. Datta

    Soft Matter Physics and Engineering; Flow Through Porous Media; Interfacial Phenomena; Biophysics; Biological Polymers; Microfluidics
  • Emily C. Davidson

    Polymer Science and Engineering; Nanostructured and Liquid Crystalline Polymers; Engineering and Design of Hierarchical Materials; Additive...
  • Pablo G. Debenedetti

    Liquid State Theory; Glass Transition; Nucleation Theory; Protein Thermodynamics; Molecular Simulation; Biopreservation
  • Bruce E. Koel

    Surface Science; Heterogeneous Catalysis; Photocatalysis; Nanoscience and Nanotechnology; Plasma-Materials Interactions
  • Yueh-Lin (Lynn) Loo

    Organic and Polymer Transistors and Solar Cells; Organic Semiconductors and Conducting Polymers; Self-Assembled Monolayers; Soft Lithography
  • Christos Maravelias

    Process Systems Engineering; Modeling, Synthesis and Analysis of Renewable Energy Systems; Optimization Methods and Algorithms
  • Athanassios Z. Panagiotopoulos

    Molecular simulation of fluids, materials and biological systems; Thermodynamic analysis of processes; Ionic liquids and their applications
  • Richard A. Register

    Polymer Chemistry, Physics, and Engineering; Nanoscience and Nanotechnology; Rheology
  • Michele L. Sarazen

    Active Site Engineering; Kinetic, Synthetic and Theoretical Techniques; Reaction Mechanisms of Heterogeneous Catalysts
  • Sankaran Sundaresan

    Granular and Multiphase Flow; Chemical Reactor Design, Stability, and Dynamics
  • Michael A. Webb

    Theory and simulation of soft/polymeric materials; computational materials design; multiscale simulation; machine-learning in molecular modeling

Associated Faculty

  • Ian C. Bourg

    Clay Mineral Surface Geochemistry; Geologic Carbon Sequestration; Kinetic Isotope Effects in Aqueous Systems; Liquid Water at Interfaces
  • Howard A. Stone

    Fluid Dynamics and Transport Processes; Complex Fluids; Colloidal Hydrodynamics; Microfluidics; Cellular-scale Hydrodynamics; Biofilms
  • Claire White

    Durability of Alkali-Activated Cements; Atomic and Nanoscale Morphology of Cementitious Materials; Reaction Kinetics of Cement Formation